首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10645篇
  免费   1486篇
  国内免费   2070篇
化学   11147篇
晶体学   147篇
力学   310篇
综合类   84篇
数学   54篇
物理学   2459篇
  2024年   22篇
  2023年   162篇
  2022年   336篇
  2021年   500篇
  2020年   746篇
  2019年   570篇
  2018年   400篇
  2017年   402篇
  2016年   487篇
  2015年   488篇
  2014年   552篇
  2013年   951篇
  2012年   729篇
  2011年   592篇
  2010年   447篇
  2009年   577篇
  2008年   579篇
  2007年   596篇
  2006年   643篇
  2005年   550篇
  2004年   570篇
  2003年   501篇
  2002年   387篇
  2001年   283篇
  2000年   281篇
  1999年   208篇
  1998年   180篇
  1997年   191篇
  1996年   181篇
  1995年   200篇
  1994年   151篇
  1993年   142篇
  1992年   133篇
  1991年   76篇
  1990年   62篇
  1989年   47篇
  1988年   49篇
  1987年   51篇
  1986年   23篇
  1985年   28篇
  1984年   19篇
  1983年   11篇
  1982年   19篇
  1981年   15篇
  1980年   19篇
  1979年   13篇
  1978年   6篇
  1977年   5篇
  1976年   8篇
  1973年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
The growth of Li dendrites hinders the practical application of lithium metal anodes (LMAs). In this work, a hollow nanostructure, based on hierarchical MoS2 coated hollow carbon particles preloaded with sulfur (C@MoS2/S), was designed to modify the LMA. The C@MoS2 hollow nanostructures serve as a good scaffold for repeated Li plating/stripping. More importantly, the encapsulated sulfur could gradually release lithium polysulfides during the Li plating/stripping, acting as an effective additive to promote the formation of a mosaic solid electrolyte interphase layer embedded with crystalline hybrid lithium-based components. These two factors together effectively suppress the growth of Li dendrites. The as-modified LMA shows a high Coulombic efficiency of 98 % over 500 cycles at the current density of 1 mA cm−2. When matched with a LiFePO4 cathode, the assembled full cell displays a highly improved cycle life of 300 cycles, implying the feasibility of the proposed LMA.  相似文献   
12.
Metal–organic frameworks (MOFs) are suitable enzyme immobilization matrices. Reported here is the in situ biomineralization of glucose oxidase (GOD) into MOF crystals (ZIF-8) by interfacial crystallization. This method is effective for the selective coating of porous polyethersulfone microfiltration hollow fibers on the shell side in a straightforward one-step process. MOF layers with a thickness of 8 μm were synthesized, and fluorescence microscopy and a colorimetric protein assay revealed the successful inclusion of GOD into the ZIF-8 layer with an enzyme concentration of 29±3 μg cm−2. Enzymatic activity tests revealed that 50 % of the enzyme activity is preserved. Continuous enzymatic reactions, by the permeation of β-d -glucose through the GOD@ZIF-8 membranes, showed a 50 % increased activity compared to batch experiments, emphasizing the importance of the convective transport of educts and products to and from the enzymatic active centers.  相似文献   
13.
Understanding the thermal aggregation behavior of metal atoms is important for the synthesis of supported metal clusters. Here, derived from a metal–organic framework encapsulating a trinuclear FeIII2FeII complex (denoted as Fe3) within the channels, a well-defined nitrogen-doped carbon layer is fabricated as an ideal support for stabilizing the generated iron nanoclusters. Atomic replacement of FeII by other metal(II) ions (e.g., ZnII/CoII) via synthesizing isostructural trinuclear-complex precursors (Fe2Zn/Fe2Co), namely the “heteroatom modulator approach”, is inhibiting the aggregation of Fe atoms toward nanoclusters with formation of a stable iron dimer in an optimal metal–nitrogen moiety, clearly identified by direct transmission electron microscopy and X-ray absorption fine structure analysis. The supported iron dimer, serving as cooperative metal–metal site, acts as efficient oxygen evolution catalyst. Our findings offer an atomic insight to guide the future design of ultrasmall metal clusters bearing outstanding catalytic capabilities.  相似文献   
14.
The structural, electronic, and vibrational properties of two leading representatives of the Zn-based spinel oxides class, normal ZnX2O4 (X = Al, Ga, In) and inverse Zn2MO4 (M = Si, Ge, Sn) crystals, were investigated. In particular, density functional theory (DFT) was combined with different exchange-correlation functionals: B3LYP, HSE06, PBE0, and PBESol. Our calculations showed good agreement with the available experimental data, showing a mean percentage error close to 3% for structural parameters. For the electronic structure, the obtained HSE06 band-gap values overcome previous theoretical results, exhibiting a mean percentage error smaller than 10.0%. In particular, the vibrational properties identify the significant differences between normal and inverse spinel configurations, offering compelling evidence of a structure-property relationship for the investigated materials. Therefore, the combined results confirm that the range-separated HSE06 hybrid functional performs the best in spinel oxides. Despite some points that cannot be directly compared to experimental results, we expect that future experimental work can confirm our predictions, thus opening a new avenue for understanding the structural, electronic, and vibrational properties in spinel oxides.  相似文献   
15.
BiVO4,a promising visible-light responding photocatalyst,has aroused extensive research interest because of inexpensiveness and excellent chemical stability.However,its main drawback is the poor photoinduced charge-transfer dynamics.Building nanostructures is an effective way to tackle this problem.Herein,we put forward a new method to prepare nanostructured BiVO4 from Bi-based metal-organic frameworks[Bi-MOF(CAU-17)]precursor.The as-prepared material has a rod-like morphology inherited from the Bi-MOF sacrificial template and consists of small nanoparticle as building blocks.Compared with its counterparts prepared by conventional methods,MOF-derived nanostructured BiVO4 shows better light absorption ability,narrower bandgap,and improved electrical conductivity as well as reduced recombination.Consequently,BiVO4 nanostructure demonstrates high photocatalytic activity under visible light towards the degradation of methylene blue.Methylene blue can be degraded up to 90%within 30 min with a reaction rate constant of 0.058 min-1.Moreover,the cycling stability of the catalyst is excellent to withstand unchanged degradation efficiency for at least 5 cycles.  相似文献   
16.
Two new divalent copper (C1) and zinc (C2) chelates having the formulae [M(PIMC)2] (where M = Cu(II), Zn(II) and PIMC = Ligand [(E)-3-(((3-hydroxypyridin-2-yl)imino)methyl)-4H-chromen-4-one] were obtained and characterized by several techniques. Structures and geometries of the synthesized complexes were judged based on the results of alternative analytical and spectral tools supporting the proposed formulae. IR spectral data confirmed the coordination of the ligands to the copper and zinc centers as monobasic tridentate in the enol form. Thermal analysis, UV-Vis spectra and magnetic moment confirmed the geometry around the copper center to be tetrahedral, square pyramidal and octahedral. Study of the binding ability of the synthesized compounds with Circulating tumor DNA (CT-DNA) bas been evaluated applying UV-Vis spectral titration and viscosity measurements. The copper and zinc oxides were achieved from the copper and zinc nano-particles structures Schiff base complexes as the raw material after calcination for 5 hr at 600°C. On the other hand, synthesized of C1 and C2 NPs were used as suitable precursors to the preparation of CuO and ZnO NPs. Finally, the synthesized of the two complexes exhibited enhanced activity against the tested bacterial (Staphylococcus aureus and Escherichia Coli) and fungal strains (Candida albicans and Aspergillus fumigatus) as compared to HPIMC. Among all these synthesized compounds, C1 exhibits good cleaving ability compared to other newly synthesized C2.  相似文献   
17.
Guided by the self-penetrating features can improve the stability of metal organic frameworks (MOFs), an unprecedented 3D self-penetrated framework, {[Zn (tptc)0.5(bimb)]·H2O}n ( NUC-6 , here NUC corresponding to North University of China), with 3D (4,4)-c {86} net, was designed. Benefit from the high chemical stability and excellent luminescent property, NUC-6 can be act as an efficient multi-response chemo-sensor in detecting dichloronitroaniline pesticide and nitrofuran antibiotics in water with the detection limits are 116 ppb for DCN pesticide, 16 ppb for NFT antibiotic, and 12 ppb for NTZ antibiotic. Besides, the mechanisms of luminescence quenching were revealed from the viewpoint of internal filter effect (IFE) and photo-induced electron transfer (PET), implied by the optical spectroscopy and quantum chemical calculation. This work provides a promising strategy to design stable MOFs by improving the self-penetrating features and to expand their practical applications in the detection of organic pollutants in aqueous medium.  相似文献   
18.
Solid-state continuous wave (cw) electronic paramagnetic resonance (EPR) spectroscopy is particularly suitable for metal complex analysis. Extracting magnetic parameters by simulation is often necessary to describe the electronic structure of the studied molecular compounds that can have various electronic spin states and characterized by different parameters like g-values, hyperfine coupling or zero field splitting values. Easyspin toolbox on MATLAB is a powerful tool, but for the user, it requires spending time with coding and could discourage nonexperts. Facing this context, we have developed a graphical user interface called Simultispin, dedicated to solid-state cw-EPR spectra simulation. Some examples of experimental spectra of metal complexes (mixture of low spin and high spin FeIII complexes, dynamic disorder of a CuII complex, photogeneration of a MnIII complex), highlighting specific solid-state functions, are described and analyzed based on simulations performed with Simultispin. We hope that its ergonomy and the ease to set up a complete set of parameters to get reliable simulations could help a large EPR community to improve the efficiency of their interpretations.  相似文献   
19.
Zinc–cobalt double-metal sulfides (ZCS) as Faradic electrode materials with high energy density have great potential for supercapacitors, but their poor transfer efficiency for electrons and ions hinders their electrochemical response. Herein, ZnCo2(CO3)1.5(OH)3@ZCS microflower hybrid arrays consisting of thin nanolayer petals were anchored on three-dimensional graphene (ZnCo2(CO3)1.5(OH)3@ZCS/3DG) by a simple hydrothermal method and additional ion-exchange process. A ZnCo2(CO3)1.5(OH)3@ZCS/3DG electrode delivered high capacitance (2228 F g−1 at 1 A g−1) and long cycling life (85.7 % retention after 17 000 cycles), which are ascribed to the multicomponent structural design. The 3DG conductive substrate improves the electron-transfer dynamics of the electrode material. Meanwhile, the microflowers consisting of thin nanolayer petals could not only provide many active sites for ions to improve the capacitance, but also alleviate the volume expansion to ensure the structural stability. Furthermore, an all-solid-state asymmetric supercapacitor based on a ZnCo2(CO3)1.5(OH)3@ZCS/3DG electrode achieved a high energy density of 27 W h kg−1 at 528.3 W kg−1 and exhibits exceptional cyclic stability for 23 000 cycles. Its ability to light a blue LED for 9 min verified the feasibility of its application for energy storage devices.  相似文献   
20.
Metal–organic frameworks (MOFs) are a promising class of materials for many applications, due to their high chemical tunability and superb porosity. By growing MOFs as (thin-)films, additional properties and potential applications become available. Here, copper (II) 1,3,5-benzenetricarboxylate (Cu-BTC) metal–organic framework (MOF) thin-films are reported, which were synthesized by spin-coating, resulting in “nanowebs”, that is, fiber-like structures. These surface-mounted MOFs (SURMOFs) were studied by using photoinduced force microscopy (PiFM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The optimal concentration of precursors (10 mm ) was determined that resulted in chemically homogeneous, pure nanowebs. Furthermore, the morphology and (un)coordinated Cu sites in the web were tuned by varying the rotation speed of the spin-coating process. X-ray diffraction (XRD) analysis showed that rotation speeds ≥2000 rpm (with precursors in a water/ethanol solution) generate the catena-triaqua-μ-(1,3,5-benzenetricarboxylate)-copper(II), or Cu(BTC)(H2O)3 coordination polymer. X-ray photoelectron spectroscopy (XPS) highlighted the strong decrease in number of (defective) Cu+ sites, as the nanowebs mainly consist of coordinated Cu2+ Lewis acid sites (LAS) and organic linker–linker, for example, hydrogen-bonding, interactions. Finally, the Lewis-acidic character of the Cu sites is illustrated by testing the films as catalysts in the isomerization of α-pinene oxide. The higher number of LAS (≥3000 rpm), result in higher campholenic aldehyde selectivity reaching up to 87.7 %. Furthermore, the strength of a combined micro- and spectroscopic approach in understanding the nature of MOF thin-films in a spatially resolved manner is highlighted.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号